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ASYMPTOTIC SOLUTIONS OF EQUATIONS OF CLASSICAL MECHANICS

V.V. KOZLOV

Motions of natural mechanical systems that approach their equilibrium positions with
unlimited increase of time are considered.

The statement of this problem and indication of existence of asymptotic motions go ap-
parently back to the paper by Kneser /1/, in which the asymptotic trajectories of conservative
systems were investigated in the neighborhood of nondegenerate equilibrium positions at which
potential energy has a local maximum. Kneser's results were extended in /2/ to the case of
degenerate equilibria of nonautonomous mechanical systems. Asymptotic solutions in the general
nondegenerate case (when the potential energy Hessian at the equilibrium position is nonzero)
were investigated by Bohl /3/. The general theorem stated in Sect.2 below shows the existence
of asymptotic motions in degenerate cases, when the force function expansion in the equili-
brium position neighborhood begins with odd order terms. Since the equations of motion of
natural systems are reversible, the respective equilibrium states are unstable.

1. Equations of motion. Let us consider a natural mechanical system with n degrees
of freedom. Let z & R" be its generalized coordinates, 7 .: (K (x)z’, 2> /2 the kinetic energy
((.> is the scalar product in R"), and F (x) the generalized forces acting on the system. The
equations of motion in Lagrangian form are

d ar ar

T e =F@

Since det K 5= (. these equations can be solved for accelerations
=T @, >+ @), @) =K (@) F @)

where (I't’, 2> is a set of n quadratic forms in velocities (the coefficients of these forms are
the Kronecker deltas of the Riemannian metric (X (z) dz, dz>).

The singular points of vector field f(r) are the only positions of equilibrium. We can
assume without loss of generality that point x = 0 (f(0) = 0) is one of equilibrium, and also
that elements of matrix K (z)and vector function F (z) are analytic in some neighborhocod of
point 0€&& R" (functions I' (z) and f(z) are obviously also analytic in that neighborhood) .

We expand vector function f(z)in a convergent power series [ (1) = [, (&) /pa (@) 4+ ..
where f,(z) is a homogeneous vector function of power p: [, (A2) =77 [,(z). We assumes that
m 7> 2 (the equilibrium position z =0 is degenerate).

2. The theorem on asymptotic motions. We begin by investigating asymptotic solu-
tions of the system of equations z = fp (z) (m > 2)- which we shall call simplified.

Lemma. If for some e R e| = 1) we have fn(e) .:xe,» > 0., the simplified equation
has the asymptotic solution

z{t) == ac= R, a=|ale

a
RIm=1)
The lemma implies that f, (z) is a central force repelling along the ray defined by vector
¢, a condition that is assumed satisfied in what follows. When force f, (z) is potential
and its force function has no local maximum in the equilibrium position, then f, (¢) ==xe for
some e &< R"™ and x% > 0.

Proof. If <z =a/t?/m1, then

2(m-+1)a

S SPIFITY ()

on the other hand

f lafe y |a|m fole) = ]a|mxe
™A gim-yy | T amfeneny Im A T amftmet)

*prikl.Matem.Mekhan. ,46,No.4,pp.573-577,1982
454



455

Consequently |a |™x =2 (m + 1)/ (m —1)® and, since % >>0r vector a & R" exists.

The asymptotic solution of the complete system
=@ 2+ fa @t )T (2.1)
I'(z) =Ty(@) 4+ T, () +.... To(a) =Ty (0) = const

is sought in the form
9

x(t):taT‘ﬁ--f—%"r el g E RN gpe=as pE= oy (2.2)
Below, an important part is played by the constant matrix of dimension n X n
A=12 Om
0z x=afth
Theorem 1. If among the eigenvalues of matrix A there are no numbers
4 (m 4 3) 6 (m 4 5) 2k (2k+m — 1) (2.3)

m—1p Tm—1p 7 (w1

then there exists a unique solution of Eg.(2.1) that can be represented in the form of series
(2.2) convergent for fairly large |!].

Corollary 1. If conditions of the above lemma and Theorem 1 are satisfied, the equa-
tions of motion have asymptotic scolutions in the form of function <« ({). which approach zero as
t - =+ oo.

Corollary 2. On these assumptions the equilibrium position z -0 is unstable.

Proof of Theorem 1. We carry out in the equation of motion (2.1) the substitution of
time ¢->t and of the independent variable z — y using formulas T ==ef and =z =ety(p =2/
{m — 1)). The equation then assumes the form

V' — fm () =e# KO (ev)y's y'> - fme () + &pp () + -0

where the prime denotes a derivative with respect to the new "time" 1t and the square brackets

contain an analytic vector function of y, y' and gk
Let us set g — § and consider the equation £ (y (1), §) = 0. where

F=y —§{nydr) - 801} du

and §{-}drt is the linear operator of formal integration of power series

S Z o dr = Z %
Ay {1 - }.”)T n

k>t T hp>1

We introduce space B, of functions x (1) that can be represented in the form of series

o

Ik
—_— n
Z TSR neER

k=1

convergent for |t | >r, 1 & C and continuous for |1 ]|2>7r. That space of norm

(EXUR ={qax lz(7) |
Tj=r

is a Banach space. For small 8, | z(t) — y' (?) | (yo = a/t)and fairly large |7 | function F (z (1),
8) (as a function of 1 e C()) belongs to B,.

thx)e following statements are valid.

1°. Function F(z (1), 8) is the continuous mapping of UX (— %, x)— B,, where x >0 is
small gnd Uis some fairly small neighborhood of point =z, =y, = — uafttst in the B, space.

20. The solution of equation F(z,, 0) =0 is z, = Uo".

37. Mapping F has in U X (— %, %) the derivative F,' (z, §) which is continuous (at least)
at point (z, 8) = (g, 0).

o . '

47, Setting z =y (1) +2(1), § =0 we obtain

af . . .
O T | L [ PN PR
F ', 0)=z 3 o zdvidr==2 = sz> dt
Let us show that this linear operator D : B, -» B.has a limited inverse. Indeed, let

N
Yl(’t): L T}r,,ul EBT

h=1
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then the equation
4 ¢
Z—S?(S zdr)d'r:u
has the solution

x

pr) =Y — — (m—1)}
o Z =Gty o[ E = gl 4

I-L

Since det (y 5= 0 for all k and C, = E + O (1/k%) , operator 07! exists and is bounded.

The properties 1°—4° of mapping F (y’, 6) enable us to apply the theorem on implicit func-
tions /4/ which states that for small § equation F (y' (1), ) =0 has the unique solution ¥ (7.
8) not much different from function y, (1). Integrating the power series of function y'(r) and
reverting to old variables z, t, we obtain the asymptotic solution z (t) of the equations of
motion which can be represented by the converging series (2.2).

3. Instability of equilibrium in a potential field. Let us assume that the gen-

eralized force F(z) is potential and V (z) is its force function. Let V (2) = Vi a1(2) + Vin,a (2)
.{m > 2), where V, is the homogeneous form of variables z = (z,,. .., Z,) of power pe N. In

normal coordinates z & K" matrix K (z) which defines the system kinetic energy is of the form
E -+ A(z), where E is the unit matrix and A (0) =0. Since f(z) =K' (2) F(z). hence f, (2
OV o1 foz.

Let maXeesV,.1 >0 , where S is an {n — l)-dimensional unit sphere {Zz? = 1} R",
and this maximum is attained on some vector ¢, then f,{¢) =xe and x»>0. We can assume
without loss of generality that e = (1, 0...., 0). The form V,,, can be represented as fol-

lows: n

n
1 <
Vo == way Z vi(zn) 25 + Z vij(z) zx;  w==const

i=2 i, je=1

where v; and v;; are some homogeneous functions of power mand m — 1, respectively. Since
5Vm+1/61} =0 (i >»2) when z; = 0 (i > 2}, hence v; = 0.
Moreover, for small %,,..., 2, and if z;, = (1 — 2 — ... — 2,3 function
n
D iyl 2 5z <O
i, j=2

The simplified equation
z" ":fm('r) g61/»1’:.*.1/63
has the solution
2

a .
Ty — M=1 = . s i 2
1 ™M a wi{m—1)* "’ Ti ’

and in this case matrix A = 1%9}f,/0zr |y, is of the form

2m (m 1)

o 0 O
0 U:;-:-L’:n vE =t — 12 v () —
_ , Uiy =y =t {ajt*, 0, ..., 0) = const
0 Uﬁ‘z Unn

The eigenvalues Ay. .., A, of matrix | uv;*|, as well as A, =2m (m + 1)/ (m — 1) * are
eigenvalues of matrix 4,

Let us ascertain whether numbers A,,. .., %, belong to sequence (2.3). If forscme k& N
the equality k (2k + m — 1) = m (m + 1) is satisfied, then 2k®* 4 (m — 1) k —m (m 1) = O,whence
k, = —m<0, k; =(m + 1)/2. Thus, when expansion of the force function X V; (i > 3) begins
with a nonzero form of odd power, the sequence of numbers (2.3) does not contain ;.

Moreover, since the form Zv;; (1, 0,. . ., 0) z;2; <0, hence X y*r,x; {0 because vy* is
proportional to v;(1,0,..., 0) with the positive coefficient g™, Consequently all A,....,

A < 0.
" Thus on the basis of Theorem 1 we have proved the following theorem.

Theorem 2. If the expansion of the forxce function in a Maclaurin series begins with
terms of odd power, there exists an asymptotic motion, and in particular, the equilibrium posi-
tion z =0 is unstable.
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4, Some generalizations. The statements about asymptotic motions proved above are
also valid in the more general case, when Chaplygin's nonholonomic mechanical systems are
considered instead of holonomic ones.

Indeed, the equations of motion of Chaplygin's system in "canonical" variables (p, q) &=
R™  are of the form /5/

=L =K@p ="t F@-B@r » (4.1)

g
+

1
T=—(K(@p p

where 7 is the kinetic energy, F (g) are generalized forces acting at points of the mechanical
system and <{B(q) p, p) is some set of »n forms quadratic form in momenta p = R". These equa~
tions are obviously inversible (together with the solution ¢ (!).p ({f) and have g (—1¢), —p (—1)
as their solution).

From the system of Egs.(4.l1) we can obtain a second order equation in g¢

¢ =<Tq, ¢>+ (@

where <I'q’, ¢) is a set n of quadratic forms in velocities and f(q) = K (¢) F(g). By a suit-
able canonical transformation we can achieve that in the new coordinates matrix K (g) = E +
Alg), A(0) =0.

It remains to point out that the structure of coefficients I' (¢} was not used in the
proof of Theorem 1.
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